TDA Progress Report 42-74

April—June 1983

Syntax Editing for Mark IV-A System Performance
Test Software

G. N. Jacobson
Qperations Sustaining Engineering Section

This article describes the syntax editing concepts used by the Operations Sustaining
Engineering Section in implementing System Performance Test software for the Mark
IV-A era. The processing functions are discussed, as well as the necessary data structures
and table generation macros used in implementing those functions. In addition, the proce-
dural and software interfaces which have been developed for users of the syntax editor
are described, including the forms required for establishing directive and parameter

characteristics.

l. Introduction

The System Performance Test (SPT) software package be-
ing developed by the Operations Sustaining Engineering Sec-
tion for the Mark IV-A DSN implementation will reside in the
backup Complex Monitor and Control (CMC) computer, a
Modcomp 7845. It consists of a test executive and a set of
six application tasks. Basically, the executive distributes in-
put data to the applications, provides resource allocation
services, and performs common processing such as data block
dumping, display generation, test procedure reading, and syn-
tax editing. The application tasks are each designed to test a
particular DSN system. Tracking, Telemetry, Command, Mon-
itor and Control, Very Long Bascline Interferometry, and Ra-
dio Science will all be supported by SPT software for the
Mark IV-A configuration. (Frequency and Timing will not re-
quire SPT software for performance testing.)

Approximately 300 SPT input directives will be required to
control the SPT software. These directives may be entered by

the operator or may be read from a test procedure file residing
on disk. In prior versions of SPT software, each application de-
veloped its own syntax editing functions, based on the formats
of its own directives. For Mark IV-A, the bulk of the syntax
checking will be done by the SPT test executive.

To accomplish this, there is a set of resident subroutines
that perform common syntax editing functions such as limit
checking, default assignments, existence of required fields, ille-
gal characters, etc. In addition, there is a set of subroutines
that perform functions peculiar to a single directive or a small
group of directives. These subroutines are referred to as Indivi-
dual Directive Processors (IDPs). If the directive has passed all
the checks made by the syntax editor, then the appropriate
IDP will be executed. The IDP can make additional syntax
checks pertinent only to this directive (if applicable). If the di-
rective is syntactically correct, the IDP will then perform the
intended function of the directive or set the applicable flag(s)
for use by the applications task.

97

Il. Syntax Editor Output Buffer

The primary interface between the resident syntax editor
and the IDPs is the 100-word syntax editor output buffer. The
first six words of the buffer contain execution time, the over-
all status of the syntax check, the number of words in the buf-
fer required for this particular directive, and the CAN code
(compressed alpha-numeric code) for the directive name. The
remainder of the buffer is defined by the programmer imple-
menting the directive. The detailed contents of the remaining
words in the buffer are itemized on the Directive Characteris-
tics Description form (see Fig. 1.) The programmer defines a
canonical form of the directive. This means that all fields are
shown on the Directive Characteristics Description form and
that they appear in the same sequence as desired for the out-
put buffer. The output buffer contains a parameter status
word for each parameter. The parameter itself is passed in a
format specified by the user.

To specify the characteristics of each parameter in detail, a
Field Characteristics Description form is used (see Fig. 2,) The
entries made on this form determine the actual syntax checks
which will be made by the syntax editor. A field listed as re-
quired must obviously be included with each occurrence of the
directive. The field may be interrelated to other fields in the
sense that at least one, exactly one, or at most one of a series
of fields may be entered. This can be easily recorded on the
Field Characteristics Description form and checked by the syn-
tax editor.

The programmer must next define whether the field con-
sists of a value, a self-identifying variable, or a variable identi-
fier equalling a value. In the third case, there are two subfields
involved, the variable identifier and the value. This is why the
Field Characteristics Description allows two subfield entries
per field.

The input format may be specified as alphanumeric, integer
(including octal or hexadecimal), numeric (may include a deci-
mal point), time (UTC or HMS format), text string, or expres-
sion. Man-machine interface standards provide for directives
with the variable portion of the directive containing a text
string. This is treated in SPT software as a single value with an
input format type of ‘“text string.”

The range vatue column will be filled in with lower and up-
per boundaries if limit checks are to be performed by the syn-
tax editor.

Legal output formats include CAN code (single or double
word), floating point (double, triple, or quadruple word),
fixed point (single, double, or quadruple precision), time
(ASCII, deciseconds since beginning of year, or milliseconds

98

since midnight), integer, and ASCIL. In the latter case, a maxi-
mum length in bytes may also be specified.

The syntax editor is capable of checking a subfield against
a list of acceptable entries. The valid entries are listed in the
next-to-last column of the Field Characteristics Description.
It is possible to request an indexed output format type. The
syntax editor will output the index number corresponding to
the position of the actual parameter in the list of acceptable
entries.

If a subfield is to assume a default value when it is omitted
from the directive, the desired default value is entered in the
last column of the Field Characteristics Description.

Illl. Syntax Definition Tables

The information contained on the Directive Characteristics
Description and the Field Characteristics Description must be
transcribed into tables for subsequent use by the syntax edi-
tor. SPT software design requires three tables for this purpose.

A. Directive Definition Table

The Directive Definition Table contains a two-word entry
per directive (see Fig. 3.) The first word of the two-word en-
try contains the CAN code for the three characters which iden-
tify the directive. (This is possible because all SPT diréctives
consist of four characters, where the first character identifies
the system under test, and the last three characters consist of a
mnemonic name for the directive.) The second word contains
a pointer to the appropriate entry in the Directive Characteris-
tics Table,

B. Directive Characteristics Table

Each entry in the Directive Characteristics Table consists of
two parts. The first part is fixed in length, consisting of two
words per directive (see Fig. 4.) The first word contains a ser-
ies of flags to indicate for which subsystems this directive is al-
lowable, whether it contains an expression or a text field, and
if it is a fixed position type of directive. The second word con-
tains the overall output size in words and the maximum num-
ber of subfields.

The second part of each entry in the Directive Characteris-
tics Table is variable in length, based on the number of param-
eters in the directive. Each parameter requires two words in
this part of the table (see Fig. 5.) The first word contains a ser-
ies of flags which relate to information specified on the Field
Characteristics Description form such as whether the field is
required or optional, whether a default value applies, whether
a list of acceptable values has been supplied, whether the field
is to be range-checked, and whether any relational characteris-

tics (such as mutually exclusive fields) apply. Also contained
in this word is the index for this parameter into the syntax edi-
tor’s output buffer. The second word points to the address of
the appropriate entry ip the Parameter Characteristics Table,
where all the detailed information relative to this parameter is
stored.

C. Parameter Characteristics Table

The Parameter Characteristics Table also contains a fixed
length portion and a variable length portion per entry (see
Fig. 6.) The first four words are required for each parameter
characteristic entry. The first word contains a pair of codes to
describe the input format and output format specified on the
Field Characteristics Description form. The first eight bits of
the second word contain the maximum length of an ASCII
field (if specified) or the number of bits to the right of the bi-
nary point (if fixed point). The remainder of the second word
contains the index into the Parameter Characteristics Table for
the default value and the number of words required for the de-
fault value, if applicable. The third word contains the index of
the lower limit and the number of words required for each of
the two limit values, if range checking is desired. (The upper li-
mit value will immediately follow the lower limit.) Similarly,
the fourth word contains the index of the first word of the list
of acceptable values and the number of words required for
each element of the list. In this case, the total number of en-
tries in the list will also be stored in the fourth word (in the
first eight bits).

Following this comes the variable length portion of the Pa-
rameter Characteristics Table entry. If a default value has been
specified for this parameter, it will be stored next in the table.
If range checking is desired, the lower and upper limits will fol-
low. Finally, if a list of acceptable values has been supplied, it
will be stored at the end of each table entry. The elements in
the list will be stored in the same order as specified by the
user. This is because an indexed output type is available for
such a parameter. As described earlier, this means that the
syntax editor will return to the user an index corresponding

to the position in the list of acceptable values where the actual
parameter was located. The user is then able to use this index

directly in subsequent processing. For this reason, the indexed
output type is very commonly requested when a list of accept-
able values is supplied for the input field.

IV. Syntax Table Generation Macros

There is actually a missing step in the transcription process
from the syntax definition forms to the syntax definition ta-
bles. It must be possible to generate the very detailed bit-
oriented tables efficiently and accurately. The route selected
was the use of macro techniques (Ref. 1).

Nine macros have been created for the purpose of syntax
editor table generation. Two macros are for initialization and
termination of the table generation process. The remaining
seven are used for creating specific entries or parts of entries
for the three tables described in the preceding section.

Four of the macros are used for creating entries in the Pa-
rameter Characteristics Table. The first of these is in fact
called the parameter characteristics macro and is used to begin
the definition of the characteristics of a particular parameter.
It must be followed by corresponding default, range, and ac-
ceptable value macros, as appropriate, if the parameter has an
associated default, range check, or list of acceptable values.
The macros must occur in this specific sequence for any pa-
rameter.

The directive name macro is used for generating a directive
name in CAN code format and a pointer to the corresponding
entry in the Directive Characteristics Table. The two words be-
come a complete entry in the Directive Definition Table. This
macro must occur after all corresponding parameter character-
istics macros.

The final two mactos are required for creating entries in the
Directive Characteristics Table. The first of these, the directive
characteristics macro, begins the generation of an entry. It is
used for creating the fixed length portion of each Directive
Characteristics Table entry. This macro must appear immed-
jately after its related directive name macro and must be im-
mediately followed by any related parameter pointer macros.
The parameter pointer macro generates the two-word subentry
per parameter in the Directive Characteristics Table. A param-
eter pointer macro is required for each possible subfield of the
directive and must appear in the same sequence as in the direc-
tive’s canonical form.

Figure 7 shows a portion of the actual macros used in the
Mark IV-A SPT software system for generating the three re-
quired tables for the syntax editor.

V. Architectural Design

The syntax editor is used for checking both directives en-
tered by the operator and directives read from a test procedure
file. As such, it is actually invoked by two routines, the main
directive processor control routine and a separate routine
which processes directives from the procedure processor. The
editor itself consists of 22 subroutines. Figure 8 contains a
hierarchical tree for the editor.

The top level, of course, consists of the main control rou-
tine for the syntax editor. It in turn calls a series of subrou-

99

tines which performs initialization functions, validates the
directive, retrieves and converts individual parameters, checks
relational characteristics (such as mutually exclusive fields or
existence of at least one or at most one of a series of fields),
sets default values, and checks for required parameters.

Of these, the only major expansion is for the routine which
retrieves and converts individual parameters, EOPARM.
EOPARM itself consists primarily of a loop for processing each
parameter in the directive. It calls a routine to obtain the next
parameter (which is further modularized to retrieve alphanu-
meric, text, or numeric subfields); checks that the retrieved pa-
rameter is legal for the prior trailing character; and then calls
EOQFSUB to correlate the input parameter with the subfield
data contained in the Directive Characteristics Table and Pa-
rameter Characteristics Table. EOFSUB contains several sub-
routines at three additional hierarchic levels to perform all of
the necessary conversions, range checking, and acceptable
value list searching. '

If the directive passes all of the syntax editor’s checks, the
appropriate Individual Directive Processor is established and
executed. The IDP often has additional syntax checks to
make, peculiar to this particular directive. For example, cer-
tain directives or certain fields may be allowed only under one
or more specific operating modes. Or some fields may become
required if some other specific field has been entered. Depend-
ing on the directive entered, the IDP often has other functions
to perform, such as setting flags or data in a global or private
shared common area. To assist the programming staff in at-
tending to all details in the design of an IDP, a checklist has
been prepared of possible IDP processing functions. This is il-
lustrated in Fig. 9.

VI. Implementation Sequence

The Mark IV-A SPT software system is being implemented
in a continually cycling, demonstrable fashion (Ref. 2). A Net-
work of Demonstrable Functions (NDF) has been prepared,
defining approximately 170 individual steps. Bach step will
demonstrate one specific function or group of functions and
will normally require implementation of around a dozen new
subroutines.

Development of the syntax editing routines and IDPs ad-
heres to the SPT implementation philosophy. Each routine
will be developed when it is required for demonstration of one
of the specific functions laid out in the NDF. As an example,
the syntax editor routine for retrieving a text subfield will not

100

be implemented until the first scheduled step which requires a
directive involving a text subfield. The IDP for enabling a long
loop test will not be implemented until work begins on the
long loop path of the NDF. Figure 10 shows a partial list of
SPT directives and the NDF step in which they will be imple-
mented.

When the design of each step is completed, a review is held
internal to the Operations Sustaining Engineering Section. To
assist in reviewing the design of the IDP, and to convey the
proper syntax (and purpose) of each directive to the ultimate
users of SPT software, a standard format has been established
for use in the Software Operator’s Manual (SOM). Figure 11
lustrates the required sections for one of the SPT directives
used for running a Command test sequence. It should be noted
that the directive response messages listed at the end of each
SOM directive description are unique to that directive or a
small subset of directives. Common messages, such as standard
acknowledgements or errors detected by the syntax editor (as
opposed to the IDP), will be listed and described once in a sep-
arate section of the SOM.

VIl. Concluding Remarks

At this point in time, 20 of the syntax editor’s 22 routines
have been developed and demonstrated. (The two routines for
fixed point conversions are not required at this time on our
implementation plan.) The editor has proven to be extremely
reliable. Close to 100 steps on the Mark IV-A SPT Network of
Demonstrable Functions have been demonstrated, and each
one has exercised the capabilities of the syntax editor to vary-
ing degrees. During this interval, only a few minor anomalies
related to the syntax editor have been detected.

Initial design of the syntax editor has proven to be ex-
tremely sound. Only one major new capability had to be
added since the primary concepts were developed. This was
the capability to have the syntax editor check for relational
characteristics, such as mutually exclusive fields. The design of
the editor was flexible enough to allow this to be added with
comparative ease.

As the application tasks require new directives for upcom-
ing steps on the NDF, the directives are incorporated into the
system easily and efficiently. Design and implementation of
most IDPs are also fairly straightforward. What used to be a
significant, time-consuming task for each application has been
reduced to a routine, standardized activity for Mark IV-A SPT
software development.

References
1. Spinak, A., “Syntax Table Generation Macros,” Internal Memorandum No. SSG-
FY82-257, Bendix Field Engineering Corporation, Pasadena, Calif., July 14, 1982.

2. Jacobson, G. N., and Spinak, A., “Top Down Implementation Plan for System Per-
formance Test Software,” TDA Progress Report 42-70, Jet Propulsion Laboratory,
Pasadena, Calif., pp. 190-199, Aug. 15, 1982.

101

102

NAME :

DIRECTIVE CHARACTERISTICS DESCRIPTION DATE:

REVISION:

2. STEP:

FUNCTION:

3. PROGRAMMER:

OVERALL GENERAL FORMAT:

LEGITIMATE SUBSYSTEM PREFIXES: _ __
C
MAXIMUM EXPECTED NUMBER OF PARAMETER FIELDS:

K T R M

SYNTAX OUTPUT BUFFER:

W 00~ O 0B W -

N N RO NN B N e s et e et e bk e el s
S U B W N = O W0 oYW NN = O

TIME MSB

TIME LSB

OVERALL STATUS

OVERALL QUTPUT SIZE

DIRECTIVE CAN CODE UPPER

DIRECTIVE CAN CODE LOWER

o o e o e e o e e = e = e e G ——]

b o o s v o e o — o e e — e omer o]

b v . — — e e e — — e — —— r— . -

FIXED POSITION INPUT (VY OR N): ___
OTHER CHARACTERISTICS:

‘ MLBTIM
{

— ILBSTA

— ILBSIZ
; MLBCAN

1LBOUT
HEADER

Fig. 1. Directive characteristics description

FIELD CHARACTERISTICS DESCRIPTION

1. DIRECTIVE NAME: 2. PROGRAMMER

3. FIELD NUMBER: 4, FIELD OPTIONAL (R OR 0):
5. FUNCTION: (R = REQUIRED, O = OPTIONAL)

6. DESCRIBE FIELD INTERRELATIONSHIPS (IF ANY)
NEXT RELATED FIELD NUMBER
AT MOST ONE EXACTLY ONE AT LEAST ONE

MAX.
SuB- V,VI, | INPUT RANGE | OUTPUT | QuTPUT LIST OF ACCEPTABLE DEFAULT

FIELD | SIV FORMAT | VALUES | FORMAT | LENGTH ENTRIES (IN INDEX ORDER)

E

SF1

SF2

7. OTHER CHARACTERISTICS:

Fig. 2. Field characteristics description

103

CAN CODE
--------------------------------- Directive 1
Pointer to
Directive Characteristics Table
CAN CODE
--------------------------------- Directive 2
Pointer to
Directive Characteristics Table
/ /
/ /
CAN CODE
--------------------------------- Directive N
Pointer to
Directive Characteristics Table
0
Fig. 3. Directive definition table
RELATIONAL INDEX INTO SYNTAX
CHARACTERISTICS EDITOR QUTPUT BUFFER
A A
/7 \/ N\
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
=T T T T T T 1 T T T 1T 1]
1= S R A A I A O R N O
w0R013|§§|:|§:|‘>‘| [A S T O B B
= [FURYe o | a.)
gglgg@glgglggl 1 T T T Y O T
PEEEETES b
POINTER TO ENTRY IN
WORD 2 PARAMETER CHARACTERISTICS TABLE

Fig. 4. Directive characteristics table, directive description entry

104

ALLOWABLE SUBSYSTEM FLAGS

/ \
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R % o] Iz
‘ | | | | | | :il HE ///’
oo TIE 2l g Iz 4l 2128
HEBLEEER 090 1T
(BB, 8 85328 ¢ %E.EFE’/
t -1 l l]] | 1;;;;¥/] I ']
|| gverae |1 1 / | maximum |
woz ||| outeur || || | MUMBER |
L | /% | SUBFIELDS
L b A 1L 1 1

Fig. 5. Directive characteristics table, parameter description entry

3 4 5 6 7 8

10 11

12 13 14 15

0 1 2
Word 1 %M/ Input Format

)

Qutput Format

2 [Maximum Leng th or Binary Point

Words

Beginning Index

s 772 27

Words

Beginning Index

4 |Number of Values

Words

Beginning Index

Default Value, if Present (1 only)

Range Values, if Present (2 only)

Acceptable Values, if Present (index order)

Default
Range

Acceptable Value List

Fig. 6. Parameter characteristics table

105

*
kdkokkokokokdkkkkdkdokkkhkkkkkkkhkkhkihkkkkkikikkikiik
* CAL Directive parameters *
Kekkkokdekkkdk kkkkkkkkkkkkkkkkkkkkkkkikkkkkkkikkkik
PCALL PARCHR,2,,R NUM, DF

RANGES 1.0E1,1.0E3
*
PCAL2 PARCHR,Z,A,,D ALP,XX,2

DEFAUL 1

ACCVAL "CFG","MON"
*
*hkkkkikkhkRrhkRkkkkhkkkhkkkkkkkkrkkkikkhhhkkkkikkkhkk
* CON Directive parameters *
kkkkk kkkrkkkkirkikhkrkkkkhhhhbkhhkhkkhhhkihhkikk
PCON1 PARCHR,2,A ALP,XX,4

ACCVAL "GET","SAVE","LIST","DEL"
*
PCON2 PARCHR,2,A ALP NP, 1

ACCVAL "FILE"
*
PCON3 PARCHR ALP,PT,,8
*
*
dedek kdok kkddek ko kkdd hkkhkkkkkhkkkhkhkiokhkklhkkbkhkkik
* CAL Directive *
Kedededkoke ok ek ko kkok ok ek Rk Ak Ak ok ke kkokkkkkkhkkkhkihkkkhkikk

DIRNAM CAL

DIRCHR,T 11,2

PARPTR,PCAL1,6 FS,R

PARPTR,PCAL2,9 FS,D,A
*
dekkkkhkk iRk kkkkkkkhdohkkkdokkikkkiokikkkkkkikkkikikik
* CON Directive *
Khdekhkkkkkkhkkkikkkkikhhkhkkkkkkkhkhhkhkikkiokikkiihkk

DIRNAM CON

DIRCHR,T 14,3

PARPTR,PCON1,6 FS,SR,A

PARPTR,PCON2,8 FS,SR,A

PARPTR,PCON3,9 SR
* .

Fig. 7. Sample SPT syntax table generation macros

106

EOSYNX
SYNTAX EDITOR
CONTROL
EOSINT EODIRT EOPARM EGMUEX EODEFR EOREGR
DIRECTIVE PROCESS CHECK CHECK REQUIRED
INITIALIZATION RELATIONAL SET DEFAULTS
VALIDATION PARAMETERS RELATIONAL FIELDS
EGDDES
FETCH
DIRECTIVE
DESCRIPTION
EOGPAR EOFSUB
GET PARAMETER CORRELATE PARAMETER
WITH SUBFIELD DATA
EQPINT EGGALP FOGTEX EOGNUN EOTIVE EGPPAR
PARAMETER GET CONVERT
PROCESSOR ALPHANUMERIC R o EIRNERIC TO BINARY iy it
INITIALIZATION SUBFIELD DECISECONDS f
TIME FORMAT
EQGALP
GET
ALPHANUMERIC
SUBFIELD
EOFLPT EONOHB EOPTIN EORANG EOACCY
CONVERT TO CHECK_LIST OF
FLOATING POINT FIXED PoINT ytC OR HMS CHECK RANGE ficoee oL
! TIME FORMAT VALUES
EOFRAC
CONVERT
FRACTIONAL
PART

Fig. 8.

Syntax editor hierarchical tree

107

108

9)
10)

11)

12)

13)
14)

IDP DESIGN CHECKLIST

Does IDP have to determine the particular case by checking to see
which parameters or what values have been entered?

Should IDP perform directive error checks in addition to those that
have been checked for by the Syntax Editor?

Is there any special processing (e.g., conversions, calculations) that
the IDP must perform?

Should the IDP set flags or data in global or private common for the
corresponding subsystem or task?

Should a semaphore (interlock) be checked and set before the data is
setup?

Should IDP notify the subsystem or task of a new data entry or flag?
Should the IDP wait for a completion response from the subsystem or task?

Should the IDP check for abnormal returns from the subsystem or task
(and then take appropriate action)?

Should the IDP provide default values for any of the subfields?

Is the IDP consistent with the interface as defined in the Syntax Output
Buffer and Syntax Definition Forms?

Should the IDP issue an acknowledgement for completion of processing the
directive?

Have the appropriate Syntax Output Buffer equivalences been defined and

coded?

Are there any other functions the IDP should perform before exiting?

For assembly language IDPs, did the IDP preserve R10 and return to the
Directive Processor via the address contained in R10?

Fig. 9. IDP design checklist

Directive Programmer

DIRECTIVE STATUS REPORT

Directive Description

Step Status

EHL M. BURNS Enables or disables halting of procedure 100 *rwx
processing when a procedure error has
occurred

ELM R. BILLINGS Modifies a command file prior to transmission CO70 %%
to the CPA

END T. OWENS Terminates a test seqUence 050 FkEk

ERA S. MAK Erases file directory C120 -

ESD M. MACAULAY Supplies the support data file name which is L04Q **
to be edited

ESH J. STICHT Edits the header of the requested support data LO40 **
file name

EST J. STREIT Enables or disables reporting, tolerance tests, TO080 *

status tests, or error rate tests and sets
appropriate parameters

Status:
- Proposed
* Submitted
** Approved
*** Tmplemented
*k%% Demonstrated

Fig. 10. Directive status report

109

NOTE!*

CAUTION:

CDRR - ENGBLE-/DISABLE UDT/DDT OR ALL FOR GCF DSN BLOCK(S)

DESCRIFTIONt: The directive CDRR encbles or disables GCF DSN
bltock(s). The request enters into or remcues from the
routing table elther ‘all’ prime CPA routing codes or
a specific UDT/DDT code.

FORMAT! CDRR z, (<UDTs=x, DDT=y>,ALL}

FIELDS! Threa required field entries c¢on be input in any

sequence when specifying a UDT/DDT code. For this case
the request is as follows:

CDRR z, UDT=x, DDT=y

Two fields in any sequence are reguired when requesting
all prime CPA routing codes. The reguest is as follows!
CDRR z, ALL

If the ‘ALL’ request is endabled, then the specifications for
unigque UDT-DDT pairs con not be requested.
must be disabled before gpecific UDT-DDT pairs coan be endbled.
The converse is also true.

The ’‘AlLL’ reguest

The UDT/DDT pairs entered are not checked for correctness
or validity,

It is poscible to Lose a block if an identical endble
request is entered. This occurs because the prior request
is removed from the routing tdable to prevent reception of
identical blocks.

PARAMETER CHARACTERISTICS!

110

Parameter | Description | Input v Range H Input Status

: 1 Type H or i (Required, Optional,
: H P Maximum 1 Mutually Exclusive,
H H ¢ Length | Acceptable Values,
: : : v Default Values)

z ! Enable or ! Alpha | 1 Char. | Acceptable walues:
i disable : : . E - for endble
T block(g) ' ' H D ~ for disdble

upT 3 User E ; E Keyword for x
v Dependent : ' '
i Tupe ' , H
v Identifier 5 5 E

X 5 UDT Cods 5 Integer | © ~-127 5 Specifies unique UDT
s : s | code

DDT 5 Data 5 E 5 Kenword for y
1 Dependent 1 i i
v Type . , ' :
i Identifier 5 5 E

Y E DDT code i Integer | @ -~ 127 | Specifies unique DDT
: ' : 1 code

ALL ! Self : : ! Acceptable value:
v Identifying | v H ALL ~ indicates all
v varicble . H . prime CFPA
' : H ' routing codes

Fig. 11. Sample SOM directive description

EXAMPLES:
Rcceptable requests!
CDRR E, UDT=$#47, DDTw«#66

CDRR E, UDT=0107, DDT=2146
CDRR E, UDT=71, DDT=102
CDRR E, ALL

CDRR D, UDT=#47, DDT=#686

Rejected requests!
CDRR E (One or more filelds are missing.)
CDRR E, UDT=ALL" (ALl 18 not a specific UDT code.}
CDRR E, UDT=%#7A (A DDT code has not been specified.)

CDRR Directive Regponse Messages

MESSAGE B REASON 1OPERATOR RESPOMSE

Dicable each UDT~
DDT previcusly

entered, reentar
the “all’ request

ALl IMvALID, UDT~
DET PAIR(S) ENABLED

The request to encble
the prime CPA routing
codes has been rejected
because gpecific UDT/DDT
routing codes were
previously enabled.

Enter the CRUNM
directive and
reenter CDRR

The CRUN directive must
be entered prior to CIRR
to identify the mission.

ERROR, CRUM MNOT
ENTERED

REQUEST NOT
ACCOMPLISHED

Reenter the
request

A status check has
indicated that the SPT
EXEC could not exescute
the request.

UDT~/DDT INVALID,
ALL EMNABELED

Disable the prime
CPA routing codes
with the ‘all”’
request, and
reenter the
directive for the
gpecific UDT~DDT

The request to enable the
specific UDT/DDT routing
code has been rejected
béecouse the prime CPA
routing codes care enabled.

Fig. 11 (contd)

